Ipv4 vs. Ipv6 Ipv4 is the fourth version of Internet protocol, but the first one to be widely deployed. It uses a 32 bit addressing and allows for 4,294,967,296 unique addresses. Ipv4 has four different class types, the class types are A, B, C, and D. An example of Ipv4 is 207. 142. 131. 235. The ipv4 uses a subnet mask because of the large numbers of computers used today. The subnet mask helps reduce the number of unique IP given to companies, corporations and so on. An example of a subnet mask is a company. A architectural company is given one ip address to use in their company. The IP that they are given is the class C addresses, 192. 182. 162. 0. However, the employees want to send information about the plan to a fellow employee. The default subnet mask is 255. 255. 255. 0 this default is used so that people can send instant messages to each other without downloading programs such as MSN messenger.
The 0 in the subnet mask allows you to have 16 different networks having 14 computers per network allowing you to have a total of 224 computers in the company. You can create these networks by modifying the 0 the only number you can modify in the network. In the binary version of the 0 of the subnet mask it looks like this 0000. You can modify the numbers from 0000 – 1111. Those numbers will represent your network, you will then need numbers for your computer. When adding the numbers for the computer your IP would look like this in tens. 255.255.255.0-0 the zero after the dash represents your computer number. The way you can modify the number is the same as the network number, the difference is that you can only the numbers 0001-1110 in other words you cannot have all ones or all zeros. For further reference there is a diagram in the next page. Ipv6 is the next in the advancement of IP’s. Although it is version 6 it will probably be the next widely deployed Internet protocol. Compared to the Ipv4 which allows for only 4,294,967,296 unique addresses, the Ipv6 that uses a 128-bit system will hold 340-undecillion (34, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000) this number is so vast that there are more unique ip addresses than stars in the universe, as we know it. However, the Ipv6 will not come out till at least 2025 in because they need time to fix the bugs in the protocol. An example of Ipv6 is: 207. 142. 131. 235. 207. 142. 131. 235. 207. 142. 131. 235. 207. 142. 131. 235. The reason we may need to switch from Ipv4 to Ipv6 is because of the population of the world. The rate at which the world’s population is growing is nothing to look down at. Also in the future all vehicles will probably be networked in order to use Onstar or other navigational devices and those need IP’s too. So eventually we would need more unique IP’s than the number we have now.Ipv4 vs. Ipv6 Ipv4 is the fourth version of Internet protocol, but the first one to be widely deployed. It uses a 32 bit addressing and allows for 4,294,967,296 unique addresses. Ipv4 has four different class types, the class types are A, B, C, and D. An example of Ipv4 is 207. 142. 131. 235. The ipv4 uses a subnet mask because of the large numbers of computers used today. The subnet mask helps reduce the number of unique IP given to companies, corporations and so on. An example of a subnet mask is a company. A architectural company is given one ip address to use in their company. The IP that they are given is the class C addresses, 192. 182. 162. 0. However, the employees want to send information about the plan to a fellow employee. The default subnet mask is 255. 255. 255. 0 this default is used so that people can send instant messages to each other without downloading programs such as MSN messenger. The 0 in the subnet mask allows you to have 16 different networks having 14 computers per network allowing you to have a total of 224 computers in the company. You can create these networks by modifying the 0 the only number you can modify in the network. In the binary version of the 0 of the subnet mask it looks like this 0000. You can modify the numbers from 0000 – 1111. Those numbers will represent your network, you will then need numbers for your computer. When adding the numbers for the computer your IP would look like this in tens. 255.255.255.0-0 the zero after the dash represents your computer number. The way you can modify the number is the same as the network number, the difference is that you can only the numbers 0001-1110 in other words you cannot have all ones or all zeros. For further reference there is a diagram in the next page. Ipv6 is the next in the advancement of IP’s. Although it is version 6 it will probably be the next widely deployed Internet protocol. Compared to the Ipv4 which allows for only 4,294,967,296 unique addresses, the Ipv6 that uses a 128-bit system will hold 340-undecillion (34, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000) this number is so vast that there are more unique ip addresses than stars in the universe, as we know it. However, the Ipv6 will not come out till at least 2025 in because they need time to fix the bugs in the protocol. An example of Ipv6 is: 207. 142. 131. 235. 207. 142. 131. 235. 207. 142. 131. 235. 207. 142. 131. 235. The reason we may need to switch from Ipv4 to Ipv6 is because of the population of the world. The rate at which the world’s population is growing is nothing to look down at. Also in the future all vehicles will probably be networked in order to use Onstar or other navigational devices and those need IP’s too. So eventually we would need more unique IP’s than the number we have now.
IPv4 | IPv6 |
Addresses are 32 bits (4 bytes) in length. | Addresses are 128 bits (16 bytes) in length |
Address (A) resource records in DNS to map host names to IPv4 addresses. | Address (AAAA) resource records in DNS to map host names to IPv6 addresses. |
Pointer (PTR) resource records in the IN-ADDR.ARPA DNS domain to map IPv4 addresses to host names. | Pointer (PTR) resource records in the IP6.ARPA DNS domain to map IPv6 addresses to host names. |
IPSec is optional and should be supported externally | IPSec support is not optional |
Header does not identify packet flow for QoS handling by routers | Header contains Flow Label field, which Identifies packet flow for QoS handling by router. |
Both routers and the sending host fragment packets. | Routers do not support packet fragmentation. Sending host fragments packets |
Header includes a checksum. | Header does not include a checksum. |
Header includes options. | Optional data is supported as extension headers. |
ARP uses broadcast ARP request to resolve IP to MAC/Hardware address. | Multicast Neighbor Solicitation messages resolve IP addresses to MAC addresses. |
Internet Group Management Protocol (IGMP) manages membership in local subnet groups. | Multicast Listener Discovery (MLD) messages manage membership in local subnet groups. |
Broadcast addresses are used to send traffic to all nodes on a subnet. | IPv6 uses a link-local scope all-nodes multicast address. |
Configured either manually or through DHCP. | Does not require manual configuration or DHCP. |
Must support a 576-byte packet size (possibly fragmented). | Must support a 1280-byte packet size (without fragmentation). |
The 0 in the subnet mask allows you to have 16 different networks having 14 computers per network allowing you to have a total of 224 computers in the company. You can create these networks by modifying the 0 the only number you can modify in the network. In the binary version of the 0 of the subnet mask it looks like this 0000. You can modify the numbers from 0000 – 1111. Those numbers will represent your network, you will then need numbers for your computer. When adding the numbers for the computer your IP would look like this in tens. 255.255.255.0-0 the zero after the dash represents your computer number. The way you can modify the number is the same as the network number, the difference is that you can only the numbers 0001-1110 in other words you cannot have all ones or all zeros. For further reference there is a diagram in the next page. Ipv6 is the next in the advancement of IP’s. Although it is version 6 it will probably be the next widely deployed Internet protocol. Compared to the Ipv4 which allows for only 4,294,967,296 unique addresses, the Ipv6 that uses a 128-bit system will hold 340-undecillion (34, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000) this number is so vast that there are more unique ip addresses than stars in the universe, as we know it. However, the Ipv6 will not come out till at least 2025 in because they need time to fix the bugs in the protocol. An example of Ipv6 is: 207. 142. 131. 235. 207. 142. 131. 235. 207. 142. 131. 235. 207. 142. 131. 235. The reason we may need to switch from Ipv4 to Ipv6 is because of the population of the world. The rate at which the world’s population is growing is nothing to look down at. Also in the future all vehicles will probably be networked in order to use Onstar or other navigational devices and those need IP’s too. So eventually we would need more unique IP’s than the number we have now.Ipv4 vs. Ipv6 Ipv4 is the fourth version of Internet protocol, but the first one to be widely deployed. It uses a 32 bit addressing and allows for 4,294,967,296 unique addresses. Ipv4 has four different class types, the class types are A, B, C, and D. An example of Ipv4 is 207. 142. 131. 235. The ipv4 uses a subnet mask because of the large numbers of computers used today. The subnet mask helps reduce the number of unique IP given to companies, corporations and so on. An example of a subnet mask is a company. A architectural company is given one ip address to use in their company. The IP that they are given is the class C addresses, 192. 182. 162. 0. However, the employees want to send information about the plan to a fellow employee. The default subnet mask is 255. 255. 255. 0 this default is used so that people can send instant messages to each other without downloading programs such as MSN messenger. The 0 in the subnet mask allows you to have 16 different networks having 14 computers per network allowing you to have a total of 224 computers in the company. You can create these networks by modifying the 0 the only number you can modify in the network. In the binary version of the 0 of the subnet mask it looks like this 0000. You can modify the numbers from 0000 – 1111. Those numbers will represent your network, you will then need numbers for your computer. When adding the numbers for the computer your IP would look like this in tens. 255.255.255.0-0 the zero after the dash represents your computer number. The way you can modify the number is the same as the network number, the difference is that you can only the numbers 0001-1110 in other words you cannot have all ones or all zeros. For further reference there is a diagram in the next page. Ipv6 is the next in the advancement of IP’s. Although it is version 6 it will probably be the next widely deployed Internet protocol. Compared to the Ipv4 which allows for only 4,294,967,296 unique addresses, the Ipv6 that uses a 128-bit system will hold 340-undecillion (34, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000) this number is so vast that there are more unique ip addresses than stars in the universe, as we know it. However, the Ipv6 will not come out till at least 2025 in because they need time to fix the bugs in the protocol. An example of Ipv6 is: 207. 142. 131. 235. 207. 142. 131. 235. 207. 142. 131. 235. 207. 142. 131. 235. The reason we may need to switch from Ipv4 to Ipv6 is because of the population of the world. The rate at which the world’s population is growing is nothing to look down at. Also in the future all vehicles will probably be networked in order to use Onstar or other navigational devices and those need IP’s too. So eventually we would need more unique IP’s than the number we have now.